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Several wave patterns can be produced by the interaction of a shock wave with a 
fluid interface. Regular wave patterns have previously been explained by a shock- 
polar analysis. We focus on an irregular wave pattern that typically occurs when a 
shock passes from a medium of high to low acoustic impedance. Curvature of either 
the shock front or contact causes the flow to bifurcate from a locally self-similar 
quasi-stationary shock diffraction, to an unsteady anomalous reflection. We show 
that the anomalous reflection wave pattern can be explained with a modified shock- 
polar analysis in which the geometric node velocity is replaced by a downstream 
boundary condition. Anomalous reflection is analogous to the transition from a 
regular to a Mach reflection when the reflected wave is a rarefaction instead of a 
shock. These bifurcations have been incorporated into a front-tracking code that 
provides an accurate description of wave interactions. Numerical results for two 
illustrative cases are described: a planar shock passing over a bubble, and an 
expanding shock impacting a planar contact. 

1. Introduction 
Wave patterns play a central role in understanding compressible fluid flow. In 

general two-dimensional flow consists of one-dimensional waves (shock, contact, or 
rarefaction) embedded in a smooth background flow. Elementary wave patterns are 
the local flow about the intersection of the one-dimensional waves. They are the most 
singular part of the solution to Euler's equations. The smooth background flow 
causes the elementary wave patterns to be quasi-steady (i.e., slowly varying in time) 
(Chern et al. 1985) or may cause them to bifurcate at discrete times (Grove 1989). In 
addition, the elementary wave patterns may interact causing them to scatter and 
bifurcate (Glimm & Sharp 1986). One well-known case is the transition between 
regular and Mach reflection. This can occur when a shock wave reflects off a curved 
wedge as the angle between the shock wave and wall increases. 

A large number of wave patterns formed by the interaction of shock, contact, and 
rarefaction waves have been observed experimentally (see e.g., Jahn 1956 ; Abd-el- 
Fattah & Henderson 1978a, b ;  Ben-Dor, Dewey & Takayama 1987). Elementary 
wave patterns that can be explained by a shock-polar analysis are called regular. All 
others are called irregular. 

The local structure of a regular wave pattern corresponds to a solution of a 
Riemann problem for a steady supersonic flow. We note that steady supersonic flow 
is described by hyperbolic partial differential equations. In two space dimensions, a 
regular wave pattern consists of two incoming waves that determine the initial data 
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for a Riemann problem, and three outgoing waves some of which may be degenerate. 
The point of intersection of these waves is called a node. The types of nodes that 
characterize these wave patterns have been classified according to the incoming 
waves by Glimm et al. (1985) into five categories: the diffraction of a shock wave a t  
a fluid interface (diffraction node); the overtaking of one shock wave by another 
(overtake node) ; the collision of shock waves of opposite families (cross node) ; the 
splitting of a shock wave (Mach node) ; and the transmission of a shock through a 
fluid interface (transmission node). 

An irregular wave pattern results from the breakdown in the local description of 
an elementary wave pattern in terms of steady supersonic flow. This may occur for 
two reasons. First, with respect to the frame of reference of the node a stationary 
oblique shock may result in a transonic flow. As a result the steady flow equations 
are of mixed hyperbolic4liptic type. Second, a solution to the Riemann problem 
may fail to exist. This is because the shock polars are bounded curves and may not 
intersect. Irregular wave patterns typically result from the bifurcation of a regular 
wave pattern into a composite of other elementary wave patterns. This occurs when 
the flow behind an oblique shock becomes sonic. For example consider an incident 
shock reflecting off a contact (Henderson 1988). The transition from regular to Mach 
reflection corresponds to a diffraction node bifurcating into a Mach node and a 
transmission node. This occurs when the flow behind the reflected shock becomes 
sonic. 

In general, interactions between shock waves and contact discontinuities can be 
divided into two classes, slow-fast or fast-slow depending on whether the shock is 
incident in the material with lower or higher acoustic impedance respectively. In the 
slow-fast case when the flow behind the transmitted shock becomes sonic a precursor 
wave pattern develops. In  the fast-slow case when the flow behind the incident shock 
becomes sonic a pattern with reflected rarefactions analogous to a Mach reflection 
develops. 

In this paper we discuss the mathematical formulation of the elementary wave 
patterns. A regular wave pattern is described as a solution to a Riemann problem for 
two-dimensional steady supersonic flow. The non-existence of the solution to this 
Riemann problem leads to the irregular wave patterns. In particular we analyse an 
irregular wave pattern called anomalous reflection. It is named after an important 
application. Namely, in the description of an underwater detonation this node leads 
to an anomalously low pressure near the surface of the water. Anomalous reflection 
commonly occurs when the regular wave pattern for the reflection of a shock from 
a contact bifurcates in the fast-slow case. This bifurcation is the analogue of the 
transition from regular to Mach reflection when the reflected wave is a rarefaction 
instead of a shock. 

The bifurcation from a diffraction node with a reflected rarefaction to an 
anomalous reflection node may occur when either or both of the incident ghock wave 
and fluid interface are curved. Measured in the frame in which the node is stationary 
the Mach number of the state immediately behind the incident shock wave decreases 
as the angle between the two incoming waves increases. When the flow behind the 
incoming shock at the node becomes sonic, the leading edge of the reflected 
rarefaction splits off from the node and begins to overtake the incident shock. 
Further increase in the angle between the incoming shock and contact leads to a 
second bifurcation in which the trailing edge of the reflected rarefaction also splits off 
from the node. This wave pattern is analogous to a Mach configuration ; the portion 
of the incident shock between the contact and the leading edge of the rarefaction 
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corresponds to  the Mach stem and the non-centred rarefaction corresponds to the 
reflected wave. This non-centred reflection is necessary because a Mach configuration 
with a centred reflected rarefaction is prohibited by two-dimensional shock stability 
(Menikoff & Plohr 1989). 

Anon~alous reflection is particularly important. in two applications : a shock 
passing over a bubble, and an underwater explosion. I n  both cases the angle between 
the incoming shock and the contact varies. In the first case there is a planar shock 
and a curved contact. In the second case the contact is planar and the shock is 
curved. To illustrate how the anomalous reflection node occurs in the cont'ext of real 
fluid flows the solutions for both examples are calculated using a front tracking code. 
The results of these simulations are presented and discussed. 

2. Mathematical formulation 
2.1. The equations of motion 

Let us consider an ideal fluid for which we can neglect viscosity, heat conduction and 
radiation. The evolution of the fluid is governed by the Euler equations describing 
the conservation of mass, momentum, and energy (see e.g. Landau & Lifshitz 1959) : 

a,p+V.(pq) = 0, (2 . la)  

(2.1 b )  

(2.1 c )  

a,(p4) + v .  (p4 o 4) + VP = 0, 

a,@&) + v -  ( P ( V  + H ) d  = 0, 

where p is the mass density, q is the particle velocity (q  = IqI), & = $q2 + E is the total 
specific energy, E is the specific internal energy, P is the pressure, H = E + PV is the 
specific enthalpy, and V = l /p  is the specific volume. The equilibrium thermo- 
dynamic pressure P is given by a function P = P ( V , E )  referred to as the equation 
of state. This function describes the thermodynamic properties of the fluid. 

To study wave interactions it is useful to consider Riemann problems. A Riemann 
problem is an initial-value problem for a hyperbolic systems of conservation laws 
(such as system (2.1) with scale-invariant initial data. In  two space dimensions this 
implies that  there is a point about which the values of the initial data are constant 
along rays. We are interested in the wave patterns that occur when the distinguished 
point corresponds to  the intersection of two incoming one-dimensional waves, i.e. 
data that correspond to  the interaction of a pair of waves that are either shocks or 
contact discontinuities. Since both the Cauchy data and the evolution equations are 
scale invariant, the solution to the Riemann problem is also scale invariant. This 
means that the equations can be reduced to  those for pseudo-steady flow. The local 
singularity structure of an elementary wave pattern is determined by further 
reducing the equations to those for steady flow. 

2.2. Scale-invariant two-dimensional Pow 
Let u and v be the x- and y-components of the velocity. For two-dimensional flow we 
choose the z-component of the velocity to be zero. 

2.2.1. Pseudo-two-dimensional $ow 

Pseudo-steady flow is described in terms of the scaled coordinates 6 = zJt and 7 = 
y / t ,  and the pseudo velocity 4" with components .ii = u-6 and v" = "-7 .  When the 
variables depend on x, y, and t only through the scaled coordinates [ and 7, the 
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system (2.1) reduces to (see e.g. Jones, Martin & Thornhill 1951 or Chang & Hsiao 

(@)4 + (Pv"), = - 2P> (2.2a) 1989) 

(PGZ+P)(+ (pSV"), = -3pG, (2 .2b )  

(pGv"), + (pv" +P),  = - 3p6, (2.2c) 

(pG(s9"+H))S+(pv"(~+H)), = -2p(92+H). ( 2 . 2 4  

This system is hyperbolic when the pseudovelocity is supersonic, i.e. the Mach 
number i@ = g / c  is greater than one, where c is the sound speed. (See e.g. Courant & 
Friedrichs 1948.) The streamlines or particle trajectories define the time-like 
direction. The hyperbolic modes consist of two families of acoustic waves and two 
linearly degenerate modes. The characteristic speed of the waves corresponds to a 
direction in the (6 ,  ?)-plane. Let 8 and be the polar coordinates of the velocity 4. The 
acoustic modes have characteristic directions with polar angles 8kA where the Mach 
angle A is given by sin a = &'. Both degenerate modes are directed along the 
particle trajectory. A wave belonging to the degenerate family is a contact 
discontinuity plus a vortex sheet across which the pressure and 8 are continuous 
while the other variables may have jumps. When the pseudovelocity is subsonic, 
system (2.2) is of mixed type. The linearly degenerate modes remain hyperbolic and 
the acoustic modes become elliptic. 

Let f = (6 ,  v), and r" = lfl. For physical initial conditions (p and c finite), r"/H+c as 
r"+ co . Hence the pseudo-steady equations are asymptotically hyperbolic. Further- 
more, on a circle of sufficiently large radius r", corresponding to a small fixed t ,  all 
the characteristics are directed inward and the circle can serve as a boundary on 
which to specify data for the initial-value problem. The number of independent 
variables in two-dimensional pseudo-steady flow (g and 7)  and a one-dimensional 
flow (x and t )  are the same. Many features of the wave structure for the two systems 
are similar. We note that the source terms in the pseudo-steady flow have a similar 
effect to those which occur for one-dimensional flow in cylindrical or spherical 
geometry. However, the initial-value problem for two-dimensional pseudo-steady 
flow is in general more complicated. Here the manifold on which the initial data is 
specified is closed and bounded, which can lead to the formation of a free elliptic 
boundary within the domain. This elliptic region is needed to regularize the 
singularity that would occur from the convergence of the characteristics emanating 
from the initial manifold. Unlike a hyperbolic equation, which is evolutionary in 
nature, the free boundary results in the initial-value problem having features in 
common with an eigenvalue problem. The elliptic boundary arises when oblique 
transonic shocks occur. Thus, even though near the initial manifold the problem is 
hyperbolic, it is in general of mixed hyperbolic-elliptic type. 

Pseudo-steady flows are observed for example when a shock wave impacts a wedge 
or diffracts around a corner. Experiments show that the solution to the two- 
dimensional Riemann problem may result in several diverging elementary wave 
patterns ; e.g. a shock wave impinging on a wedge leading to double Mach reflection 
(Ben-Dor 8: Glass 1979), or the diffraction of a shock around a concave corner (Skews 
1967). An elementary wave pattern is the local wave pattern consisting of the 
intersection of two incoming one-dimensional waves plus up to three outgoing waves 
and is the leading singularity in the solution to the fluid flow equations. We call the 
intersection of waves which form an elementary wave pattern a node. The different 
nodes are connected by one-dimensional waves and surrounded by a smooth 
background flow. This is the analogue to one-dimensional flow in which an initial 
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discontinuity (one-dimensional Riemann problem) is resolved into several ele- 
mentary waves (shock, contact, or rarefaction) connected by constant states. 

The local structure about a node is determined by the solution for small values of 
the pseudo-steady variables. When 6 and q are small, the source terms in the pseudo- 
steady flow equations are unimportant. Small [ and q correspond in the full time- 
dependent two-dimensional problem to large values oft .  As a result the elementary 
wave patterns are asymptotic solutions for large t and hence the solution to the one- 
dimensional Riemann problem for the equations of steady two-dimensional flow. 
These elementary wave patterns are determined by shock-polar relations. The source 
terms in the pseudo-steady flow equations result in the elementary wave patterns 
being quasi-steady, i.e. the elementary wave patterns slowly vary in time. 

There is a helpful analogy between the elementary wave patterns in two- 
dimensional flow and shock waves in one-dimensional flow. Smooth spatial variations 
in one-dimensional flow cause a time variation in the strength of a shock wave. Yet 
a t  any instant in time the states across the discontinuity satisfy the Hugoniot 
relations for a steady wave. Similarly, smooth spatial variations in two-dimensional 
flow cause an elementary wave pattern to vary in time. But a t  any instant of time 
the discontinuities from the intersection of the one-dimensional waves satisfy the 
shock polar relations for a steady elementary wave pattern. Thus, the Hugoniot 
relations and the shock polar relations express the local conservation laws for 
discontinuities in one and two dimensions respectively. 

2.2.2. Steady two-dimensional flow 

the time derivatives to zero. The system (2.1) reduces to 
For steady two-dimensional flow the equations of motion are obtained by setting 

( 2 . 3 ~ )  

(2.3b) 

Steady wave patterns are observed for example in wind-tunnel experiments. 
With the correspondence x f-, c, y t--f q, u t, .ii and v t, G the mathematical structure 

of the steady equations is the same as the pseudo-steady equations except that the 
source terms are 0. In particular, the steady equations are hyperbolic for supersonic 
flow. 

Let us consider an elementary two-dimensional wave pattern. The incoming 
(outgoing) waves are adjacent to the upstream (downstream) flow and their wave 
type corresponds to a characteristic pointing towards (away from) the node. For a 
shock (rarefaction) wave the streamlines are bent towards (away from) the node for 
an incoming wave and away from (towards) the node for an outgoing wave. Incoming 
waves, which may be either shocks or contact discontinuities, bend the upstream 
particle trajectories towards each other and are the cause of the interaction. 
Outgoing waves bend the downstream particle trajectories to be parallel to each 
other and are the result of the interaction. When the flow behind the incoming waves 
is supersonic in the frame of the node, the incoming waves specify the initial 
conditions for a Riemann problem of the steady two-dimensional flow equations. The 
particle trajectories are the time-like direction. If the solution to the Riemann 
problem exists and the flow is entirely supersonic it determines an elementary wave 

11-2 
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pattern corresponding to a regular node. In  this case the outgoing waves are 
completely determined by the upstream data. 

The solution to the Riemann problem of the steady equations is complicated by 
the fact that the type of the PDEs (hyperbolic or mixed) depends on the nature of 
the flow (supersonic or transonic). When the flow is transonic and the equations are 
of mixed type the solution to the Riemann problem may not exist or not be unique. 
The steady solution is in the frame of the node. Thus, for a given pair of incoming 
waves in the laboratory frame, it is important to determine the node velocity in order 
to know the equation type. For a regular node, the node velocity is determined 
geometrically from the wave speeds of the incoming waves and the angle between 
them. 

An irregular wave pattern occurs when the Riemann problem for two-dimensional 
steady flow fails to have a regular solution. In  this case, some downstream 
information must be used together with the incoming waves to determine the wave 
pattern. It is helpful to think about the flow physically by considering what happens 
when a regular wave pattern is perturbed by increasing the angle between the 
incoming waves while leaving their strength fixed. In  the frame of the node when one 
of the one-dimensional waves (either incoming or outgoing) becomes sonic the wave 
pattern bifurcates. Intuition for the bifurcations come from experimental studies of 
the interaction of a shock on a contact (diffraction node) leading to outgoing waves 
consisting of a transmitted shock, a contact and a reflected shock or rarefaction 
(Jahn 1956; Henderson 1988). Which wave becomes sonic first depends on the 
relative wave impedances across the contact. For weak shocks the wave impedance 
is approximately the acoustic impedance (pc). In  general the wave impedance is pa, 
where cr is the wave speed and depends on the strength of the shock (Henderson 
1989). In the slow-fast case the transmitted shock becomes sonic and a precursor 
develops in the transmitted medium, leading the node to split into a composite of 
several nodes (Abd-el-Fattah & Henderson, 1978 b) .  The reflected shock becoming 
sonic corresponds to the transition between regular and Mach reflection for steady 
flow (the transition criterion is more complicated for pseudo-steady flow) (Hornung 
1986). The fas6slow case when the incident shock becomes sonic is discussed in this 
paper. 

2.3. Regular wave patterns 
A regular wave pattern corresponds to a solution of a Riemann problem for a steady 
supersonic two-dimensional flow. The initial state is determined by the collision of 
two incoming waves: shock on shock, or shock on contact. The solution to the 
Riemann problem consists of two outgoing non-degenerate waves of the opposite 
families, shock or rarefaction, separated by a contact discontinuity. A steady two- 
dimensional shock is an oblique shock and a rarefaction is a Prandtl-Meyer fan. A 
contact may also be vortex sheet, i.e. the tangential velocity may be discontinuous 
across the contact. This corresponds to the two degenerate hyperbolic modes. Thus, 
in general a regular wave pattern corresponds to the intersection of five waves ; two 
incoming and three outgoing. The qualitative structure of the solution to a steady 
two-dimensional Riemann problem is analogous to the solution to a Riemann 
problem for one-dimensional flow. The outgoing waves are determined by the 
intersection of the projection of wave curves ; for one-dimensional flow the projection 
is in the (P,u)-plane, and for two-dimensional steady flow the projection is in the 
(P,  @-plane. 

There are several important differences between Riemann problems for steady 
two- and one-dimensional flow (Menikoff 1989). In  particular, the wave curves have 
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different properties. For physically reasonably equations of state the one-dimensional 
wave curve is monotonic and unbounded. This results in the existence and 
uniqueness of a solution to the one-dimensional Riemann problem (Menikoff & Plohr 
1989). The steady two-dimensional wave curves are closed and bounded. As a result 
the solution to the steady two-dimensional Riemann problem may not be unique or 
may not exist. There is a further difficulty since one is usually interested in a flow 
observed in a frame that is moving with respect to the wave interactions. Thus, there 
is the problem of determining the Galiean transformation from this ‘lab ’ frame into 
the frame in which the node is stationary. 

2.3.1, Supersonic steady-state wave curves 
We next describe the wave curves for supersonic steady two-dimensional flow. 

Wave curves are parametrized by the initial state, p,  E ,  and q.  There is a wave curve 
for each hyperbolic mode. The wave curve €or a non-degenerate mode has two parts 
corresponding to shock and rarefaction waves. The portion of the wave curve 
corresponding to shock waves is called a shock polar. 

A shock polar (Courant & Friedrichs 1948, $$117-122) is the locus of final states 
that can be connected to a given initial state by a stationary oblique shock wave. It 
is composed of two families, one corresponding to each sound mode. It is convenient 
to label the families by whether 8 increases in the clockwise or counterclockwise 
direction as P is increased. 

There is a one-to-one correspondence between stationary oblique shocks with a 
given incident Mach number and normal one-dimensional shocks. In particular 
suppose both the waves have initial state with density, energy and pressure po, E ,  
and Po respectively. The thermodynamics states on either side of a shock wave are 
related by the Hugoniot equation 

E = Eo+i(P+Po) (4- V) .  (2.4) 

For a normal shock the wave speed with respect to the fluid ahead is u = 

V , ( - A P / A V ) t ,  and the jump in the velocity across the shock is given by u- 
uo = +po(V,-  V1)a. Similarly, for an oblique shock the angle with respect to the 
incoming streamline is p = sin-l(u/q,), and the jump in the flow direction across the 
shock is given by (Grove 1989) - 

tan (8-0,) = & cot p. 

The flow velocities on either side of a stationary shock, normal or oblique, are related 
by Bernoulli’s equation 

k2+H = +&+H,. 

Despite the correspondence between one-dimensional shocks and two-dimensional 
oblique shocks there is an important qualitative difference between the one- 
dimensional shock Hugoniot and the two-dimensional shock polar. For most 
materials the projection of the one-dimensional shock Hugoniot in the ( P ,  u)-plane is 
monotonic and mmi-infinite. On the other hand oblique shocks on the shock polar are 
limited in strength by the incident Mach number. The projection of the shock polars 
for both families in the (P,8)-plane forms a closed bounded loop. As a result wave 
curves for different initial states may fail to intersect leading to non-existence of a 
solution to  the Riemann problem, or the wave curves may intersect more than once 
leading to non-uniqueness of the solution to the Riemann problem. 

In addition, the downstream state of a stationary oblique shock may be either 
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subsonic or supersonic. On a shock polar the weak shocks are supersonic and the 
strong shocks are transonic. Thus, while the shock polar may be the natural 
definition for the shock portion of the wave curve, the states on the shock polar are 
not entirely within the supersonic domain necessary for the steady equations to be 
hyperbolic. With reasonable conditions on the equation of state, the sound speed on 
the one-dimensional shock Hugoniot is monotonic and there is only one sonic point 
on each family of the shock polar. Furthermore, for two-dimensional shock stability 
the pressure a t  the sonic point is less than the pressure when 0 is maximum (Menikoff 
& Plohr 1989). Thus, the supersonic portion of the shock polar is monotonic and 
bounded. As a result there can be a t  most one solution of the steady two-dimensional 
Riemann problem in which the flow remains supersonic and the equation are entirely 
hyperbolic. Non-existence and non-uniqueness of solutions to steady two-dimen- 
sional Riemann problems are the result of transonic oblique shocks. 

There is also a one-to-one correspondence between a Prandtl-Meyer fan and one- 
dimensional rarefactions. In  both cases the thermodynamic variables lie on an 
isentrope (constant entropy curve) determined by integrating the relation 

dE = -PdV. (2.7) 

Along a one-dimensional rarefaction the velocity is determined by the partial - 

Riemann invariant 

Inside a Prandtl-Meyer wave the magnitude of the flow speed is found from 
Bernoulli's relation, (2.6), and the flow angle from the partial Riemann invariant 
(Thompson 1971) e =  e,+["w-j cos A . 

PCQ s 

In  analogy to the shock polar defined by (2.4)-(2.6) we shall refer to the locus of 
states defined by (2.7)-(2.9) as a rarefaction polar. 

The wave curve for stationary supersonic flow through a given state with pressure 
Yo is obtained by the concatenation of the branch of the shock polar with P > Po with 
the branch of the rarefaction polar with P <Po. Standard theory (Lax 1957) shows 
that the combined curve is twice continuously differentiable. For a point on the wave 
curve, A8 = 8-8, is called the turning angle of the wave. The incident flow must be 
supersonic for both an oblique shock and a Prandtl-Meyer fan to exist. 

There is a useful analogy between steady two-dimensional wave patterns and time- 
dependent one-dimensional flow. With the streamline in the time-like direction, the 
wave pattern in two dimensions corresponds to the (x, t)-diagram in one dimension 
for the scattering of waves. The wave patterns and polar diagrams are described 
next. 

2.3.2. Elementary wave nodes 
I n  order to determine the wave pattern resulting from the interaction of two 

incoming waves i t  is first necessary to compute the node velocity. A geometric node 
velocity is defined as the phase velocity of the intersection point of the incoming 
waves when they are propagated in the normal direction with the appropriate one- 
dimensional wave speed. The first criterion for a regular wave pattern is that in the 
frame moving with the geometric node velocity the flow behind the incoming waves 
is supersonic. In  this case the two states behind the incoming waves are the initial 
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FIGURE 1. A sketch of the wave pattern and polar diagrams for a regular shock-contact 
diffraction tha t  produces a reflected rarefaction wave. 

conditions for a steady two-dimensional Riemann problem. The second criterion for 
a regular wave pattern is that there exists a solution of the Riemann problem. The 
solution to the Riemann problem is determined by the intersection of the projections 
in the ( P ,  @)-plane of the two wave curves for the initial states. The third criterion is 
that  the flow behind the outgoing waves is compatible with the downstream 
boundary conditions. The wave curves have a t  most one intersection in which the 
flow behind the outgoing waves is supersonic. If the downstream boundary condition 
is that the flow is supersonic then the incoming waves completely determine an 
elementary wave pattern. 

The common wave patterns have been discussed by Landau & Lifshitz (1959, 
5 102), and classified by Glimm et al. (1985) and Henderson (1988). Here we refine and 
extend the classification of elementary wave patterns. 

The regular wave patterns may be subdivided into three cases according to the 
incoming wave types. A diffraction node occurs when a shock impacts a contact. It 
results in a transmitted shock, a displaced contact, and a reflected wave. The 
reflected wave may be either a shock or a rarefaction. When the wave impedance is 
lower for the medium of the transmitted wave than for the medium of the incident 
shock the reflected wave is a rarefaction. There is a degenerate case in which the 
reflected wave has zero strength. Usually the flow behind the outgoing waves is 
supersonic but this is not true in general. A typical example of a diffraction wave 
pattern and polars for this case is sketched in figure 1. 

An overtake node is produced when one shock wave overtakes another shock of the 
same family. It results in a transmitted shock, a displaced contact and a reflected 
wave that is either a shock or a rarefaction. The degenerate case when a shock is 
overtaken by a sonic signal (zero strength shock) is important in the analysis of the 
anomalous reflection. The collision of two shocks of the opposite families produces a 
cross-node. Here the scattered waves are shocks separated by a contact discontinuity. 

There are two other common elementary nodes which can be constructed using 
wave curves. These differ from the previous regular nodes in that downstream data 
are needed in addition to the incoming waves to determine the node velocity. The 
first of these is the Mach node. A Mach node occurs for example when a regular 
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reflection bifurcates into Mach reflection. In a sense it is a degenerate case of a 
diffraction node in which the incoming contact has zero strength. The Mach node 
corresponds to  one incoming shock splitting into two outgoing shocks separated by 
a contact. The flow behind one of the outgoing waves, the Mach stem, is always 
subsonic. This wave pattern corresponds to choosing the solution of the Riemann 
problem which is not entirely supersonic and shows that the non-uniqueness of the 
two-dimensional steady Riemann problem is physically important. For the 
anomalous node it is important to note that a Mach reflection with a reflected 
rarefaction cannot occur (Menikoff & Plohr 1989). This is because on the shock polar 
the pressure of the sonic point is below the pressure at the maximum turning angle. 
Furthermore, this is a necessary condition for two-dimensional shock stability. 

The last common elementary wave pattern is a transmission node. It is similar to 
a degenerate diffraction node, i.e. no reflected wave. However, the incident shock is 
transonic in the frame of the node. This causes the equations for the flow behind the 
incoming waves to be of mixed type, hyperbolic-lliptic. Thus, even though this node 
can be described using wave curves, i t  does not correspond to  a solution of a Riemann 
problem for the steady-state hyperbolic flow equations. The elliptic region is 
important for the stability of this node. For the quasi-steady time-dependent 
transmission node, the spatial dependence of the downstream flow is coupled to the 
node by the downstream boundary condition and causes the incident shock to curve. 
In contrast, a degenerate diffraction node is a transient state of a quasi-steady 
diffraction node as the reflected wave goes from a rarefaction to  a shock or vice versa. 

There is one more elementary wave pattern which can be determined with the use 
of wave curves. This is the kink node which is of important for compressible 
Kelvin-Helmholtz instability (Artola & Majda 1989). The kink node consists of an 
incoming rarefaction and outgoing shock separated by a combined vortex sheet and 
contact. There is a kink in the contact a t  the node. It is unusual in that the time-like 
directions are reversed across the contact. This is because in the frame of the node 
the vortex sheet is strong enough to reverse the directions of the particle trajectories 
on either side of the contact. 

When any of the criteria for a regular wave pattern fail then the assumption of 
steady two-dimensional flow breaks down. I n  general one must consider the initial- 
value problem for pseudo-steady flow. However, there are cases when the local wave 
pattern can be constructed from a modified Riemann problem in which the node 
velocity is determined consistent with both the incoming waves and the downstream 
boundary data. An example of this is the anomalous reflection described in the next 
section. 

3. Anomalous reflection 
Many experiments have been performed to study the diffraction of a shock on a 

contact. Mach-Zehnder interferogrames clearly show the changes in the wave 
pattern as the angle between an incident shock (with fixed strength) and a contact 
is varied. Many of the wave patterns have been explained using polar diagrams 
(Henderson 1966; Hornung 1986). One of the interferogrames, figure 14(g) of Jahn 
(1956), shows an irregular wave pattern which corresponds to anomalous reflection. 
Jahn gave a qualitative description of this wave pattern. To quantitatively describe 
the anomalous reflection one must account for the variation of the node velocity 
resulting from the curvature of the incident shock. This affects the incident Mach 
number for the polar analysis. 
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3.1. Physical description 

We begin by considering a diffraction node with a reflected rarefaction. Suppose the 
shock strength is held fixed as the angle between the incoming shock and contact is 
increased. The node velocity is determined from the shock velocity and the angle 
between the shock and contact as described above. In particular the node velocity 
decreases, and on the appropriate shock polar the incident shock goes from 
supersonic to subsonic. Because a Prandtl-Meyer fan can only exist for supersonic 
flow, a steady solution fails to exist and the diffraction node must bifurcate when the 
incident shock becomes sonic. 

In this case a sound signal propagates out from the node causing the incident shock 
to curve. The curvature changes the node velocity in such a way that at  the node the 
incident shock remains sonic. This can be thought of as the head of the centred 
rarefaction peeling off from the diffraction node and propagating along the incident 
shock. This weakens the incident shock and causes it to curve and consequentially 
the transmitted shock also curves. This configuration has the appearance of a quasi- 
steady diffraction node together with a non-centred rarefaction running along a 
curved incident shock. The change in wave pattern may be considered as a 
bifurcation of a diffraction node into a sonic diffraction node plus a degenerate 
overtake node which then move apart. By a sonic diffraction node we mean that the 
state behind the incident shock is sonic with respect to the node. The overtake node 
is degenerate in the sense that the overtaking shock is of zero strength, i.e. a sonic 
signal or Mach line. The wave pattern is analogous to an (2, t)-diagram in one space 
dimension of a rarefaction overtaking a shock (N-wave) which then scatters off a 
contact. 

As the angle between the contact and incident shock continues to increase more of 
the rarefaction peels off the diffraction node ; the non-centred rarefaction becomes 
stronger and the centred rarefaction becomes weaker. When the strength of the 
centred rarefaction shrinks to zero the diffraction node becomes degenerate (no 
reflected wave). There are two possibilities : either the incident shock shrinks to zero 
strength, or the incident shock become transonic leading to a transmission node. 

The former case occurs when there is a large difference in the compressibility of the 
fluids, e.g. air-water interface. In this case as the centred rarefaction shrinks to zero, 
the strength of the incident shock also shrinks to zero. The incident shock becomes 
normal to the interface and the trailing edge of the non-centred rarefaction wave 
becomes parallel to the incident shock. Thus, the non-centred reflected rarefaction is 
the same strength as the incident shock. The flow near the diffraction node is to 
leading order a one-dimensional unsteady flow with a rarefaction wave overtaking a 
shock wave from behind. 

The latter case occurs when there is a small difference in the compressibility of the 
fluids. In this case the shock polars for the materials on each side of the contact cross 
at the sonic point for the medium of the incoming shock. Further increasing the angle 
provides a continuous mechanism for generating a transmission node with transonic 
incoming shock in the rest frame of the node. 

In either case, the resulting wave pattern is analogous to a Mach node with a 
reflected rarefaction. The portion of the incident shock wave between the contact 
and the leading edge of the non-centred reflected rarefaction corresponds to the Mach 
stem. 
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3.2. Numerical implementation 

The qualitative discussion of the anomalous reflection in the previous section can be 
incorporated into a front-tracking code to give an enhanced resolution of the 
interaction. 

The method of front tracking provides a means of gaining enhanced resolution of 
computational problems with discontinuities by directly incorporating analytic 
knowledge about the solution into the numerics (Glimm & McBryan 1985 ; Glimm 
et al. 1981 ; Chern et al. 1985 ; Glimm et al. 1985). Previous work (Grove 1989) described 
the tracking (two-dimensional) of a regular shock-contact diffraction node. A 
shock-contact diffraction node is propagated between time steps of increment At as 
follows. Let poo be the position of the node a t  the start of the time step. The pair of 
incoming waves (the incident shock and material interface) are first propagated 
independently ignoring their interaction. Their intersection is the node position po at  
the end of the time step. This determines the node velocity u = (po-poo)/At.  The 
polar analysis is performed in the rest frame of the node. We use the node velocity 
to transform to this frame. If the state behind the incident shock is supersonic, it 
together with the state on the opposite side of the material interface provide data for 
a supersonic steady-state Riemann problem. When the solution to the Riemann 
problem exists i t  defines a regular wave pattern. The outgoing tracked waves are 
then modified to incorporate this solution. The smooth background flow causes the 
strength of the incoming waves and the angle between them to slowly vary. As a 
result the node which locally describes the leading-order singularity a t  the 
intersection of the waves is quasi-steady. When the solution to the Riemann problem 
fails to exist the node must bifurcate. 

If the state behind the incident shock becomes subsonic then the incoming waves 
no longer defines a valid steady-state Riemann problem and the node must, also 
bifurcate. A bifurcation to an anomalous reflection occurs when on the previous time 
step the reflected wave is a Prandtl-Meyer wave. The first step in modelling this 
bifurcation is to propagate the leading edge of the reflected wave onto the incident 
shock. This is done as before, by finding the point of intersection p1 between the two 
propagated curves. If the reflected wave is untracked, it is recovered by calculating 
the characteristic through the old node position corresponding to the state behind 
the incident shock. It is assumed that a t  the beginning of the time step the flow is 
supersonic, so this characteristic is real. The leading edge of the reflected rarefaction 
moves with sound speed with respect to the fluid in the direction normal to this 
characteristic. If the leading edge of the Prandtl-Meyer wave is tracked, it is 
disconnected from the original diffraction node and a new overtake node 
corresponding to the oblique overtaking of a characteristic (zero-strength shock 
wave) with a shock wave of the same family is installed a t  pl. 

We next determine the node velocity which fixes the frame of reference for a new 
Riemann problem that determines the diffraction node after the bifurcation. As the 
rarefaction expands onto the incident wave, the incident shock near the material 
interface is weakened. This causes the incident shock to curve, decreasing the node 
velocity. The new node velocity must be geometrically consistent with both the 
change in the wave speed of the shock and the change in the angle betwcen the shock 
and the contact. In  addition, for the portion of the reflected wave attached to the 
node to be a centred rarefaction thc flow behind the incident shock at  the node must 
be sonic. Thus, for an irregular node we must solve for the node velocity from the 
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FIGURE 2. A diffraction node initially atp,, bifurcates into an anomalous reflection. The predicted 
new node position at p o  yields a Mach number of 0.984 behind the incident shock. The leading edge 
of the reflected Prandtl-Meyer wave breaks away from the diffraction node to form an overtake 
node a t  p l .  The propagated position of the diffraction node is adjusted to return the flow to sonic 
behind the node. 

downstream boundary condition before solving the Riemann problem. Then the 
solution is used to  update both the incoming and outgoing waves. 

It is convenient to  use the propagated-node position instead of the corrected node 
velocity as an independent variable. We use arclength to parametrize the propagated 
material interface. Letp(s) be a point a distance s from pointp, when measured along 
the curve with the positive direction being oriented away from the node into the 
region ahead of the incident shock. Let @(s) be the angle between the tangent vector 
to  the material interface atp(s)  and the directed line segment between the pointsp(s) 
and pl, see figure 2. Moving the node to position p(s), results in a node velocity 
u(s)  = @(s) -poo)/At. Let q ( s )  be the velocity of the flow ahead of the incident shock 
in the frame that moves with node velocity u(s) .  The mass flux across the incident 
shock that makes an angle p(s) with the upstream material interface is given by 

Using the mass flux is equivalent to enforcing the consistency between the node 
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velocity and the incident wave geometry. It is numerically more stable than using 
the wave speed. The state behind the shock and hence its Mach number M ( s )  are 
determined by m ( s )  and the state ahead of the incident shock through the Hugoniot 
relations for an oblique shock. The new node positionp(s,) is determined by solving 
for s* the nonlinear equation M(s,) = 1.  Finally, the state behind the incident shock 
with mass flux m(s*) together with the state on the opposite side of the contact are 
used as data for a steady-state Riemann problem. The solution determines the 
propagated or updated node. The state a t  the node serves as a boundary condition 
for the tangential sweep along the front. This enables information about the non- 
centred rarefaction originating at the node to propagate outward and weaken the 
incident shock causing it to  curve. 

The subsequent propagation of the anomalous reflection node is performed in the 
same way. The bifurcation simply repeats itself as more of the reflected rarefaction 
propagates up the incident shock. The leading edge of the reflected rarefaction wave 
that connects to the diffraction node is not tracked after the first bifurcation. 

Secondary bifurcations occur when the trailing edge of the rarefaction overtakes 
the incident shock. These are detected in a couple of ways. If the incident shock is 
sufficiently weak, i.e. the normal shock Mach number is close to 1, then it is possible 
for the numerically calculated upstream Mach number to  be less than one. Physically 
of course the state ahead of the incident shock is always supersonic, but if it is nearly 
sonic such numerical undershoot may occur. When this happens, the construction 
described above must be modified. The tracked trailing rarefaction edge is disengaged 
from the diffraction node and installed in a new overtake node found by intersecting 
the propagated characteristic with the ahead shock. The residual shock strength for 
the portion of the incident shock behind the rarefaction wave is small. The diffraction 
node a t  the material interface reduces to the degenerate case of a sonic signal 
diffracting through a material interface, and the induced downstream waves are also 
sound waves. It is convenient and more stable to consider degenerate nodes with a 
zero-strength incident wave rather than having a shock start or end in an interior 
region of the flow. 

The second way in which the secondary bifurcation is detected occurs when the 
trailing edge of the rarefaction overtakes the shock. When this happens a new 
intersection between the incident shock and the trailing-edge characteristic is 
produced. Again the tracked characteristic is disengaged from the diffraction node 
and a new overtake node is installed a t  the point of intersection. Here, the residual 
shock strength behind the rarefaction is positive. The diffraction a t  the material 
interface is non-trivial and will produce an additional expansion wave behind the 
original one. Most often this new expansion wave is not tracked. 

4. Planar shock passing over a bubble 
One class of applications where the anomalous reflection is important is in flows 

where a shock passes over an inhomogene,ity of lower wave impedance. The 
inhomogeneities are a source for generating turbulence and hot spots. Shock wave 
interactions with bubbles have been studied experimentally (Hass & Sturtevant 
1987 ; Dear & Field 1988). Moreover, the propagation of the lead shock front over a 
bubble has been calculated numerically by Schwendeman (1988) using Whithams 
shock dynamics. Shock dynamics is an approximation to the fluid equations for the 
lead shock wave in which the interior flow is neglected. By contrast front tracking 
is a method for the solution of the fluid equations. It determines the reflected waves 
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and the interior flow as well as the lead shock. Most important, front tracking 
accounts for the coupling between the interior flow and shock waves. In  addition, 
numerical calculations with shock-capturing methods are described in Picone & 
Boris (1988) and Winkler et al. (1987). There, interest is in the vorticity generation 
in the late stage after the shock has swept over the bubble. By contrast we are 
interested in the wave patterns and bifurcations that occur in the early stage as the 
shock interacts with the bubble. 

Our first numerical example is the flow of a planar shock in water over a cylindrical 
air cavity. The water is treated with a stiffened gas equation of state 

P(V,E)  = rop(E-Em)-(rO+1)P,, (4.1) 

P(V>E)  = (Yo-l)PE, (4.2) 

with ro = 6, Em = 0, and P, = 3000 atm. The air is treated as a polytropic gas 

with yo = 1.4. For the unperturbed state Po = 1 atm, and the initial densities are 
pwater = 1 g/cc and pair = 0.0012 g/cc. We note that this is a more extreme range of 
parameters, density and compressibility ratio, for the bubble and surrounding 
medium than previous calculations. Two cases with different initial water shock 
strengths are computed. 

4.1. Weak shock 
In  the first case, the strength of the initial water shock is Pshock/Po = 100. The Mach 
number ahead of the shock is M = us/cwater = 1.009. Because of the large ratio of 
acoustic impedances (pc)water/(pc)air % 3500 and the stiff equation of state for water, 
the impedance match when the shock first hits the contact results in the water 
surface blowing into the air cavity with velocity u approximately twice that of the 
fluid velocity uo behind the original incident shock. As a consequence, the pressure 
behind the reflected rarefaction in the water is only slightly greater (about 6 YO) than 
Po, and the transmitted shock in the air is very weak u/cair = 0.04. Because the 
particle velocity is small relative to  the shock velocity in both the air and water, the 
wave propagation is in the acoustic limit. 

A time sequence of front plots is shown in figure 3. When the shock first hits the 
bubble, figure 3 ( b ) ,  a pair of diffraction nodes is formed. The rarefaction is very 
narrow because the Mach number of the incident shock in the water is small. Both 
the leading and trailing edge of the rarefaction are tracked. They lie within 1 zone 
of each other. The spreading is small because the characteristic velocity of the head 
and tail of the rarefaction are both u f c  M co. Thus, the thin rarefaction has the 
appearance of a ‘rarefaction shock’. The curvature of the bubble causes the angle 
between the incident shock and contact to increase and eventually each diffraction 
node bifurcates into an anomalous reflection. Subsequently, there is a second 
bifurcation into an anomalous Mach reflection as described above, figure 3 (c ) .  At this 
point, the shock at the bubble interface is reduced to zero strength. Finally, when the 
shock passes the back of the bubble, the two nodes formed by the diffraction of the 
zero-strength shock (Mach line) through the bubble interface coalesce and the water 
shock detaches from the bubble, figure 3 ( d ) .  Because of the boundary conditions the 
expanding rarefaction passes out of the computational domain. The water-air 
contact moves very little during the time it takes the water shock to pass over the 
air bubble because the shock is very weak, uparticle 4 ushock. Another consequence of 
the weak incident shock is that the transmitted shock in the air is a circle with a 
centre displaced from the cavity. This follows because the weak air shock has an 
almost constant wave speed (sound speed), and because of the large phase velocity 
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FIGURE 3. The production of an anomalous ‘Mach’ reflection. A shock wave with behind pressure 
of 100 bars (Mach number 1.009) in water is incident on B bubble of air. The upstream states are 
ambient a t  1 atm. and standard densities. In one microsecond the trailing edge of the reflected 
Prandtl-Meyer wave has overtaken the incident shock producing an analogue to an ordinary Mach 
reflection where the reflected wave is a non-centred rarefaction. The grid is 60 x 60. 

(shock speed water/shock speed air >> 1) the air shock is almost normal to the 
contact. 

The fronts move through an underlying Eulerian grid. They provide boundary 
conditions for each interior-connected component. In  addition, smooth waves from 
the interior are coupled to and affect the propagation of the fronts. The interior grid 
provides information on the flow behind the fronts. A time sequence of pressure 
contours is shown in figure 4. Owing to the divergence of the flow there is an 
expansion wave behind the tail edge of the rarefaction. This causes the rarefaction 
to weaken. It also affects the time dependence of the nodes. 

4.2. Strong shock 

For the second case, the shock in the water is stronger, PIPo = 10000. The front plots 
are shown in figure 5 (compare with Schwendeman 1988, figure i l b ) .  The 
nonlinearities of the flow are larger and the rarefaction spreads out over a larger 
distance. The anomalom reflection with the curvature of the incident shock is more 
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FIGURE 4. Pressure contours for figure 3. The contours are plotted on a scale of &lo0 bars. The 
tracked fronts are shown as a dark line superimposed on the pressure contours. 

clearly visible, figure 5 ( c ) .  The two phases of the bifurcation are also more distinct, 
figures 5 ( c )  and 5 ( d ) .  Furthermore, the contact is distorted because of the smaller 
ratio of wave speeds. A time sequence of pressure contours is shown in figure 6. Both 
the centred and non-centred rarefaction a t  the anomalous node is clearly seen, figure 
6(c).  A t  late time a jet from the front impacts the back of the contact resulting in a 
large pressure. In heterogeneous high explosives this mechanism is an impprtant 
source of hot spots and has an important effect on the initiation and propagation of 
a detonation wave (Mader 1965). 

5. Interaction of expanding shock on planar contact 
Another class of application for which anomalous reflection is important occurs in 

flows when an expanding shock impacts a planar fluid surface. An important 
example of this is when the blast wave from an underwater explosion reaches the 
surface (Holt 1977). Irregular reflections at the water surface have been observed in 
numerical calculations, see e.g. Kamegai (1986). However, lack of resolution has 
smeared out and distorted the interaction, limiting the understanding of the wave 
pattern. Front tracking is well suited to this type of problem. Our second numerical 
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FIGURE 5. The collision of a shock wave in water with an air bubble. The fluids ahead of the shock 
are at normal conditions of 1 atm. pressure, with the density of water 1 g/cc and air 0.0012 g/cc. 
The pressure behind the incident shock is 10 Kbar with a shocked water density of 1.195 g/cc. The 
grid is 60 x 60. 

example is a simulation of the flow resulting from an underwater detonation; a 
cylindrically expanding shock in water impacts the surface with air. 

The detonation is modelled by a cylinder of reacting products at  high energy 
density and pressure. For the reaction psoducts, we used a polytsopic equation of 
state with y = 1.4, and initial density, p = 1.25 g/cc, and pressure, P = 10 Kbar. The 
initial conditions outside of the shock are at  one atmosphere (x 1 bar) pressure and 
standard densities for air and water. 

The first calculation begins with the reacting products slightly inside an expanding 
water shock having a radius of 1 m at a depth 2 m below the surface of the water. The 
velocity of the reaction products was set to match that of the fluid behind the water 
shock. The computational limit for the simulation cell is 80 x 80 m, and the grid is 
150 x 150. 

A time sequence of tracked fronts is shown in figure 7. Because gravity is 
unimportant on the timescale of the calculation, the initial water shock is still 
circular when it reaches the surface, figure 7 ( b ) .  At this point a pair of diffraction 
nodes is formed and propagates along the interface in opposite directions. A 
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FIGURE 6. Contours of log( 1 +P) for figure 5. The contours in (b) and (c) are plotted on a scale of 
0.001-10 Kbars, while the pressure range in (d) is 0-8.5 Kbars. The tracked fronts are shown as a 
dark line superimposed on the pressure contours. 

transmitted shock propagates into the air and the reflected rarefaction in the water. 
When the water rarefaction reaches the reaction products, the release in pressure 
causes the bubble of reaction products to rise. When the bubble of reaction products 
approaches the surface, the rapid and asymmetric change in pressure distorts the 
shape of the bubble. The expanding water shock causes the angle between the shock 
and the contact to increase which results in a bifurcation to an anomalous reflection, 
figure 7 ( b ) .  This is seen in the pressure contours, figure 8. The shock speed of the 
expanding wave in the air slows a t  a larger rate than the shock speed of the water 
and falls behind. This leads to a precursor shock in the air ahead of the cylindrically 
expanding wave, figure 7 ( d ) .  The kink in the shock fronts a t  the interaction of the 
precursor and the expanding wave is indicative of a Mach configuration. The 
reflected wave for this configuration is not being tracked but is taken account by the 
interior scheme. 

A second series of frames for the same interaction with a different set of parameters 
is shown in figure 9. Here, the initial shock is located 10 m below the water surface 
with an initial radius of 1 m. The parameters outside of the expanding shock are the 
same as in the previous calculation, but in this case the pressure behind the initial 
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FIG~JRE 7. An underwater expanding shock wave diffracting through the water’s surface. An 
expanding shock wave with an internal pressure of 10 Kbars and initial radius of 1 m is installed 
a t  a depth of 2 m below the water’s surface. The external conditions are ambient a t  1 atm. pressure 
and normal densities for the air and water. The boundary conditions are constant Dirichlet a t  the 
initial ambient values. The grid is 150 x 150. 

expanding shock is 100 Kbar with the density and velocity of the reaction products 
initially set a t  1.25 g/cc and 1.54 km/s respectively. 

This simulation is qualitatively similar to that of the previous one, but the 
increased shock strength causes the simulation to evolve on a faster timescale. 

6. Numerical considerations 
These examples illustrate that the singularity structure from irregular wave 

interactions can be incorporated into the solution with the front-tracking method. 
Precisely knowing the positions of the fronts is a great aid for understanding the 
dominant features of the flow including when and how these features bifurcate. By 
explicitly taking into account the most singular aspect of the flow, the wave patterns, 
an accurate solution can be achieved with coarser mesh resolution than for shock 
capturing algorit hrns. 

The wave patterns cause capturing algorithms difficulty for several reasons. A 



Anomalous rejfection of a shock wave at a $fluid interface 333 

I 
c---) 

25 AS = 25 Ay 

FIGURE 8. A blowup of figure 7 (b )  showing pressure contours scaled from 0.001-10 Kbars. The 
tracked interface is shown superimposed as EL dark line over the pressure contours. 

typical wave pattern, e.g. diffraction node, is the intersection of five waves. Most 
(high-order accurate) finite-difference schemes use quadrilateral meshes. The nodes 
must be smeared over many zones because of the difference in topology. Because the 
waves are independent degrees of freedom, front tracking is much less sensitive than 
(the usual directionally split) capturing schemes to the orientation of the waves with 
the numerical grid. 

For shock capturing methods transients will occur when a wave crosses an 
interface between media with very different physical properties (such as density or 
compressibility) which take many zones to dissipate. This can be minimized by 
adjusting the grid such that the zone size in the normal direction on each side of the 
interface is proportional to their respective wave speeds. But this condition is 
frequently incompatible with other constraints such as limited mesh resolution. A 
large ratio of compressibility between materials results in a wave travelling many 
cells in the more compressible material during the time it takes a wave to travel one 
cell in the less compressible material. A similar difficulty occurs in resolving very thin 
rarefactions as occurred in the example in $4.1. 

These difficulties are overcome with front tracking by storing multivalued states 
along the front and using Riemann solvers for propagating the front. Smearing out 
of nodes because of artificial viscosity and lack of sufficiently fine mesh resolution 
leads to difficulties in distinguishing between wave patterns such as the diffraction 
node and anomalous reflection, and thus make it difficult to understand the 
dominant features of the flow. In  some cases, numerical schemes may not calculate 
the bifurcation of the wave patterns (such as diffraction to anomalous reflection) 
correctly and lead to qualitatively wrong flows. 

Tracking a large number of waves becomes impractical. While i t  is important that 
the dominant waves be tracked, other weaker waves can be captured by the interior 
scheme with minimal loss in accuracy. This occurred in the example in $5.  In  the 
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FIQURE 9. The same simulation as shown in figure 8 except an expanding shock wave with an 
internal pressure of 100 Kbars and initial radius of 1 m is installed 10 m below the water’s surface. 
The figures show the tracked front as a dark line superimposed over log( 1 + P )  contours scaled from 
the minimum and maximum pressure in each frame; (a )  0-10, (a) 0-5.4, (c) 0-3.2, ( d )  04 .36  Kbar. 
The grid is 60 x 60. 

simulations of underwater explosions, for example, the edges of the reflected 
rarefaction produced by the diffraction of the shock through the surface were not 
tracked. The evolution of the transmitted air shock develops a kink or Mach node 
which was also not tracked. For the example in $4.2 we have preformed other 
calculations in which either the trailing edge or both edges of the rarefaction from the 
anomalous reflection nodes were not tracked. The loss in accuracy is discernible but 
the qualitative features of the flow are unchanged. 

7. Summary 
The qualitative features that dominate compressible fluid flow are shock, 

rarefaction and contact waves, and the elementary wave patterns which result from 
their interactions. We have discussed the mathematical framework that describes 
the wave patterns and explained the distinction between regular and irregular wave 
patterns. The regular wave patterns correspond to the solution of a Riemann 
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problem for two-dimensional steady supersonic flow. These Riemann problems are in 
the frame moving with the geometric node velocity. Irregular wave patterns occur 
when the solution to the Riemann problem fails to exist. 

The smooth background flow causes the regular wave patterns to be quasi-steady ; 
a slow variation in the strength and angle between the incoming waves which 
characterized the regular wave pattern. In  fluid flows the irregular wave patterns 
typically arise when the quasi-steady regular wave patterns bifurcate into a 
composite of elementary wave patterns. A key point in describing the irregular wave 
patterns is to determine the node velocity. 

We have illustrated this framework by describing in detail one of the irregular 
wave patterns, the anomalous reflection node. I n  this case the node velocity is 
determined by the condition that the flow behind the incident shock wave a t  the 
node is sonic. The anomalous reflection is the analogue of Mach reflection when the 
reflected wave is a rarefaction. A diffraction node with a reflected shock may 
bifurcate into a Mach node and a transmission node. Similarly, a diffraction node 
with a reflected rarefaction may bifurcate into an anomalous reflection node and a 
degenerate overtake node. 

We have shown how the irregular wave patterns and the bifurcations of the regular 
wave patterns which generate them can be incorporated into a front-tracking 
algorithm for simulating fluid flow. This is illustrated with numerical calculations of 
a shock passing over a bubble and an underwater detonation. 

Several open questions remain concerning the wave patterns that occur in fluid 
flow. These include a complete classification of all elementary wave patterns and a 
general description of the allowed bifurcations of elementary wave patterns into 
composite wave patterns. One example is the precursor wave pattern that occurs 
from a shock interaction at a slow-fast interface. In addition there is the problem of 
describing the scattering of nodes. Typically, this occurs when the interaction of a 
shock a t  the side boundaries of a medium generates nodes which propagate along the 
shock front. The nodes travelling along the shock front in opposite directions are 
bound to interact. These problems are of interest both from a physical and a 
mathematical point of view. 
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